

WarcDB: Web crawl data as SQLite databases.

[image: PyPI] [https://pypi.org/project/warcdb/]
[image: Tests] [https://github.com/Florents-Tselai/WarcDB/actions/workflows/run-tests.yaml]
[image: License] [https://github.com/Florents-Tselai/WarcDB/blob/main/LICENSE]
[image: GitHub Stars]

WarcDB is an SQLite-based file format that makes web crawl data easier to share and query.

It is based on the standardized Web ARChive format [https://en.wikipedia.org/wiki/Web_ARChive],
used by web archives, and defined in ISO 28500:2017 [https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/].

Usage

pip install warcdb

Load the `archive.warcdb` file with data.
warcdb import archive.warcdb ./tests/google.warc ./tests/frontpages.warc.gz "https://tselai.com/data/google.warc"

warcdb enable-fts ./archive.warcdb response payload

Search for records that mention "stocks" in their response body
warcdb search ./archive.warcdb response "stocks" -c "WARC-Record-ID"

As you can see you can use any mix of local/remote and raw/compressed archives.

For example to get a part of the Common Crawl January 2022 Crawl Archive [https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-05/index.html] in a streaming fashion:

warcdb import archive.warcdb "https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-05/segments/1642320306346.64/warc/CC-MAIN-20220128212503-20220129002503-00719.warc.gz

You can also import WARC files contained in WACZ [https://specs.webrecorder.net/wacz/latest] files, that are created by tools like ArchiveWeb.Page [https://archiveweb.page], Browsertrix-Crawler [https://github.com/webrecorder/browsertrix-crawler], and Scoop [https://github.com/harvard-lil/scoop].

warcdb import archive.warcdb tests/scoop.wacz

How It Works

Individual .warc files are read and parsed and their data is inserted into an SQLite database with the relational schema seen below.

Schema

If there is a new major or minor version of warcdb you may need to migrate existing databases to use the new database schema (if there have been any changes). To do this you first upgrade warcdb, and then import into the database, which will make sure all migrations have been run. If you want to migrate the database explicitly you can:

warcdb migrate archive.warcdb

If there are no migrations to run the migrate command will do nothing.

Here’s the relational schema of the .warcdb file.

[image: WarcDB Schema]

Views

In addition to the core tables that map to the WARC record types there are also helper views that make it a bit easier to query data:

v_request_http_header

A view of HTTP headers in WARC request records:

	Column Name

	Column Type

	Description

	warc_record_id

	text

	The WARC-Record-Id for the request record that it was extracted from.

	name

	text

	The lowercased HTTP header name (e.g. content-type)

	value

	text

	The HTTP header value (e.g. text/html)

v_response_http_header

A view of HTTP headers in WARC response records:

	Column Name

	Column Type

	Description

	warc_record_id

	text

	The WARC-Record-Id for the response record that it was extracted from.

	name

	text

	The lowercased HTTP header name (e.g. content-type)

	value

	text

	The HTTP header value (e.g. text/html)

Motivation

From the WARC formal specification [https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/]:

The WARC (Web ARChive) file format offers a convention for concatenating multiple resource records (data objects),
each consisting of a set of simple text headers and an arbitrary data block into one long file.

Many organizations such as Commoncrawl, WebRecorder, Archive.org and libraries around the world, use the warc format
to archive and store web data.

The full datasets of these services range in the few pebibytes(PiB),
making them impractical to query using non-distributed systems.

This project aims to make subsets such data easier to access and query using SQL.

Currently, this is implemented on top of SQLite and is a wrapper around the
excellent SQLite-Utils [https://sqlite-utils.datasette.io/en/stable/] utility.

"wrapper" means that all
existing sqlite-utils CLI commands [https://sqlite-utils.datasette.io/en/stable/cli-reference.html]
can be called as expected like

sqlite-utils <command> archive.warcdb`

or

warcdb <command> example.warcdb

Examples

Populate with wget

wget --warc-file tselai "https://tselai.com"

warcdb import archive.warcdb tselai.warc.gz

Get all response headers

sqlite3 archive.warcdb <<SQL
select json_extract(h.value, '$.header') as header,
 json_extract(h.value, '$.value') as value
from response,
 json_each(http_headers) h
SQL

Get Cookie Headers for requests and responses

sqlite3 archive.warcdb <<SQL
select json_extract(h.value, '$.header') as header, json_extract(h.value, '$.value') as value
from response,
 json_each(http_headers) h
where json_extract(h.value, '$.header') like '%Cookie%'
union
select json_extract(h.value, '$.header') as header, json_extract(h.value, '$.value') as value
from request,
 json_each(http_headers) h
where json_extract(h.value, '$.header') like '%Cookie%'
SQL

Develop

You can use poetry to install dependencies and run the tests:

$ git clone https://github.com/Florents-Tselai/WarcDB.git
$ cd WarcDB
$ poetry install
$ poetry run pytest

Then when you are ready to publish to PyPI:

$ poetry publish --build

Resources on WARC

	The stack: An introduction to the WARC file [https://archive-it.org/blog/post/the-stack-warc-file/]

Index

 nav.xhtml

 Table of Contents

 		
 WarcDB: Web crawl data as SQLite databases.

_static/minus.png

_static/plus.png

_static/file.png

